john_toolbox.preprocessing.pandas_transformers.SelectColumnsTransformer¶
-
class
john_toolbox.preprocessing.pandas_transformers.
SelectColumnsTransformer
(columns: Optional[List[str]] = None)[source]¶ Bases:
sklearn.base.BaseEstimator
,sklearn.base.TransformerMixin
This class aims to keep desired columns in Sklearn pipeline. .. seealso:
:obj:`DropColumnsTransformer` Drop columns from DataFrame. :obj:`EncoderTransformer` Drop columns from DataFrame. :obj:`FunctionTransformer` Use of standard Encoder from sklearn. :obj:`DebugTransformer` Keep track of information about DataFrame between steps.
Methods
fit
Fit to data, then transform it.
Get parameters for this estimator.
Set the parameters of this estimator.
transform
-
fit_transform
(X, y=None, **fit_params)¶ Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
- Parameters
X (array-like of shape (n_samples, n_features)) – Input samples.
y (array-like of shape (n_samples,) or (n_samples, n_outputs), default=None) – Target values (None for unsupervised transformations).
**fit_params (dict) – Additional fit parameters.
- Returns
X_new – Transformed array.
- Return type
ndarray array of shape (n_samples, n_features_new)
-
get_params
(deep=True)¶ Get parameters for this estimator.
- Parameters
deep (bool, default=True) – If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
params – Parameter names mapped to their values.
- Return type
dict
-
set_params
(**params)¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
**params (dict) – Estimator parameters.
- Returns
self – Estimator instance.
- Return type
estimator instance
-