john_toolbox.preprocessing.pandas_transformers.SelectColumnsTransformer

class john_toolbox.preprocessing.pandas_transformers.SelectColumnsTransformer(columns: Optional[List[str]] = None)[source]

Bases: sklearn.base.BaseEstimator, sklearn.base.TransformerMixin

This class aims to keep desired columns in Sklearn pipeline. .. seealso:

:obj:`DropColumnsTransformer`
    Drop columns from DataFrame.

:obj:`EncoderTransformer`
    Drop columns from DataFrame.

:obj:`FunctionTransformer`
    Use of standard Encoder from sklearn.

:obj:`DebugTransformer`
    Keep track of information about DataFrame between steps.

Methods

fit

fit_transform

Fit to data, then transform it.

get_params

Get parameters for this estimator.

set_params

Set the parameters of this estimator.

transform

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters
  • X (array-like of shape (n_samples, n_features)) – Input samples.

  • y (array-like of shape (n_samples,) or (n_samples, n_outputs), default=None) – Target values (None for unsupervised transformations).

  • **fit_params (dict) – Additional fit parameters.

Returns

X_new – Transformed array.

Return type

ndarray array of shape (n_samples, n_features_new)

get_params(deep=True)

Get parameters for this estimator.

Parameters

deep (bool, default=True) – If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns

params – Parameter names mapped to their values.

Return type

dict

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters

**params (dict) – Estimator parameters.

Returns

self – Estimator instance.

Return type

estimator instance