john_toolbox.preprocessing.pandas_transformers.EncoderTransformer¶
-
class
john_toolbox.preprocessing.pandas_transformers.
EncoderTransformer
(encoder, column: Optional[str] = None, encoder_args: Optional[Dict] = None, new_cols_prefix: Optional[str] = None, is_drop_input_col: bool = True)[source]¶ Bases:
sklearn.base.BaseEstimator
,sklearn.base.TransformerMixin
This class let you use standard Encoder from sklearn.
-
encoder
¶ Standard sklearn Encoder. For example, you can provide OneHotEncoder.
-
column
¶ Column to transform with the encoder.
- Type
str, Optional
-
encoder_args
¶ Arguments to pass to the sklearn encoder.
- Type
Dict, Optional
-
new_cols_prefix
¶ If you provide value, all generated column will have a this value as prefix.
- Type
str, Optional
-
is_drop_input_col
¶ the old column will be removed if self.column != new_cols_prefix and is_drop_input_col == True or if self.column == new_cols_prefix
- Type
bool, Optional, default True
See also
SelectColumnsTransformer
Keep columns from DataFrame.
DropColumnsTransformer
Drop columns from DataFrame.
FunctionTransformer
Apply function to a column.
DebugTransformer
Keep track of information about DataFrame between steps.
Methods
fit
Fit to data, then transform it.
Get parameters for this estimator.
Set the parameters of this estimator.
transform
-
fit_transform
(X, y=None, **fit_params)¶ Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
- Parameters
X (array-like of shape (n_samples, n_features)) – Input samples.
y (array-like of shape (n_samples,) or (n_samples, n_outputs), default=None) – Target values (None for unsupervised transformations).
**fit_params (dict) – Additional fit parameters.
- Returns
X_new – Transformed array.
- Return type
ndarray array of shape (n_samples, n_features_new)
-
get_params
(deep=True)¶ Get parameters for this estimator.
- Parameters
deep (bool, default=True) – If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
params – Parameter names mapped to their values.
- Return type
dict
-
set_params
(**params)¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
**params (dict) – Estimator parameters.
- Returns
self – Estimator instance.
- Return type
estimator instance
-