john_toolbox.preprocessing.pandas_transformers.DropColumnsTransformer¶
-
class
john_toolbox.preprocessing.pandas_transformers.DropColumnsTransformer(columns_to_drop: Optional[List[str]] = None)[source]¶ Bases:
sklearn.base.BaseEstimator,sklearn.base.TransformerMixinThis class let you remove a column in Sklearn pipeline.
See also
SelectColumnsTransformerKeep columns from DataFrame.
EncoderTransformerDrop columns from DataFrame.
FunctionTransformerUse of standard Encoder from sklearn.
DebugTransformerKeep track of information about DataFrame between steps.
Methods
fitFit to data, then transform it.
Get parameters for this estimator.
Set the parameters of this estimator.
transform-
fit_transform(X, y=None, **fit_params)¶ Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
- Parameters
X (array-like of shape (n_samples, n_features)) – Input samples.
y (array-like of shape (n_samples,) or (n_samples, n_outputs), default=None) – Target values (None for unsupervised transformations).
**fit_params (dict) – Additional fit parameters.
- Returns
X_new – Transformed array.
- Return type
ndarray array of shape (n_samples, n_features_new)
-
get_params(deep=True)¶ Get parameters for this estimator.
- Parameters
deep (bool, default=True) – If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
params – Parameter names mapped to their values.
- Return type
dict
-
set_params(**params)¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters
**params (dict) – Estimator parameters.
- Returns
self – Estimator instance.
- Return type
estimator instance